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A general linear problem of input-output analysis is considered in the paper as a system of 
equations written in terms of free variables for any rectangular input-output table given. This system 
spans the regular linear equations for material and financial balances, a batch of predetermined values for 
exogenous variables (in turn, net final demand and gross value added) and an additional set of linkage 
equations that provides the exact identifiability for all unknown variables. 

Variations in exogenous elements of input-output model lead to the changes of price and quantity 
proportions in the resulting production and intermediate consumption matrices that are formally described 
by two nonlinear multiplicative patterns. It is shown how these patterns can be linearized and adjusted for 
evaluating the input-output model at constant prices and at constant level of production. 

The strict identifiability of input-output model at constant prices is achieved by introducing to the 
system of its equations either (1) the linear matrix-valued cost function with industry outputs as its 
arguments based on (Leontief) technical coefficients or (2) the linear matrix-valued production function 
with industry inputs as its arguments based on industry productive (quasi-reciprocal technical) 
coefficients. In contrast, the model at constant level of production is exactly identifiable provided that one 
involves in it either (3) the linear matrix-valued cost function with product outputs as its arguments based 
on (Ghosh) allocation coefficients or (4) the linear matrix-valued production function with product inputs 
as its arguments based on product multiplication (quasi-reciprocal allocation) coefficients. 

Identification of the production and intermediate consumption matrices at constant prices and at 
constant production level for rectangular input-output tables leads to the pair of trivial model solutions 
with exogenous value added and exogenous final demand, respectively. Nevertheless, for square input-
output tables there are also the pair of nontrivial supplementary solutions with exogenous final demand at 
constant prices and exogenous value added at constant level of production. It is important to emphasize 
here that using matrix-valued production functions (2) and (4) with quasi-reciprocal technical and 
allocation coefficients gives the same solutions as introducing matrix-valued cost functions (1) and (3) 
with conventional coefficients, respectively. Thus, technical and allocation coefficients should be 
regarded as helpful ways of economic interpretation rather than as basic framework or operational tools 
for modeling. Moreover, equivalence of the models with the matrix-valued production functions and the 
models with the matrix-valued cost functions can be appreciated as a clear demonstration of general 
equilibrium in the theory of input-output analysis and an ostensive evidence of dual nature of input-output 
modeling. 

Obtained supplementary solutions are used for formulating the advanced versions of Leontief 
demand-driven model and Ghosh supply-driven model with generalized technical and allocation 
coefficients. For a symmetric input-output table with diagonal production matrix, the generalized 
demand-driven and supply-driven models can be easily transformed to the classical forms of Leontief and 
Ghosh input-output models. The equivalence of Leontief price model and Ghosh supply-driven model as 
well as the equivalence of Leontief demand-driven model and Ghosh quantity model is proven. 

Keywords: rectangular input-output table, matrix-valued production and cost functions, exogenous 
changes in final demand and value added, demand-driven and supply-driven models, quantity and price 
models 
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1.  Linear input-output model: a general formulation 

The general linear input-output model of an economy with N products (commodities) and M 

industries (sectors) for the certain time period leans on a pair of rectangular matrices, namely 

supply (production) matrix X and use for intermediates (intermediate consumption) matrix Z of 

the same dimension NM both. In mathematical notation, the model includes the vector equation 
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for material balance of products’ intermediate and final uses, i.e., 

yZeXe  MM ,                                                         (1) 

and the following vector equation for financial balance of industries’ intermediate and primary 

(combined into value added) inputs: 

vZeXe  NN                                                           (2) 

where  and  are N1 and M1 summation column vectors with unit elements, y is a 

column vector of net final demand with dimensions N1, and v is a column vector of value 

Ne Me

added with dimensions M1. Here putting a prime after vector’s (matrix’s) symbol denotes a 

transpose of this vector (matrix). 

“One of the major uses of the information in an input-output model is to assess the effect 

on an economy of changes in elements that are exogenous to the model of that economy” (Miller 

and Blair, 2009, p. 243). To measure the changes mentioned above, in most practical cases there 

usually is the supply and use table for economy under consideration for some time period (say, 

period 0) compiled from available statistical data. This table includes the production matrix X0 

and intermediate consumption matrix Z0 with dimensions NM, (N1)-dimensional column 

vector of net final demand y0 , and (M1)-dimensional column vector of value added v0 (see 

Eurostat, 2008). Note that the equations (1) and (2) are exactly met for the initial supply and use 

table components.  

With accordance to the quotation above, the main aim of constructing input-output models 

is to assess an impact of the exogenous changes (either absolute or relative) in net final demand 

and, by virtue of symmetry in the balance equations under consideration, an impact of the 

exogenous changes in gross value added on simultaneous behavior of the economy as a whole 

and its industries. Balance models do not usually reflect the true causes of the certain changes in 

final demand or value added, so the response of the economy to any exogenous disturbance of 

some model component is evaluated in the mode of getting answers to the questions like “what 

would happen if ...? ”. 

The balance model (1), (2)  contains N+M linear equations with 3(N+M) scalar variables. 

Assume that exogenous disturbance is expressed in terms of k exogenous variables. To provide 

exact (or strict) identifiability of the model it is required to incorporate into it 2(N+M) – k 

auxiliary independent equations as a certain set of linkages between the variables. In particular, 

N+2M independent equations are needed at k = N, and 2N+M equations are needed at k = M. The 

structure of initial supply and use table serves as an informational framework for constructing 

the auxiliary linkage equations. 
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2. The price and quantity transformations of the model variables 

In principle, any finite variations in exogenous elements of the input-output model (1), (2) lead 

to the changes of price and quantity proportions in the resulting (i.e., disturbed) supply and use 

table. The most general way to describe an impact of these changes on matrices X and Z is as 

follows: 

0XQPX XX  ,               0ZQPZ ZZ   

where  and  are NM-dimensional matrices of the relative price indices for products, Q  XP ZP X

and  are NM matrices of the relative quantity (physical volume) indices for industries of the ZQ

economy, and the character “  ” denotes the Hadamard’s (element-wise) product of two 

matrices with the same dimensions.  

Following Motorin (2017), one can assume that in market economy PPP ZX  , and 

 on the current level of production. Besides, it is quite natural to propose also that 

the price on certain product does not vary along the row of producing-and-consuming industries, 

QQQ ZX 

i.e.,  for all m = 1M at n = 1N where the character “  ” between the lower and upper 

bounds of index’s changing range means that the index sequentially runs all integer values in the 

specified range, and, moreover, that the production quantity index for the certain industry’s 

output and intermediate consumption is keeping invariable through all products produced and 

consumed, namely,  for all n = 1N at m = 1M .  

nnm pp 

mnm qq 

Thus, matrices P and Q can be represented respectively as  and MepP  qeQ  N  

where p is a column vector of the relative price indices on products with dimensions N1, q is a 

column vector of the relative quantity indices for industries with dimensions M1, and the 

character “  ” denotes the Kronecker product for two matrices. 

Transforming the above statements into regular matrix notation gives two nonlinear 

multiplicative patterns 

qXpX ˆˆ 0 ,                 qZpZ ˆˆ 0                                                    (3) 

where putting a “hat” over vector’s symbol (or angled bracketing around it) denotes a diagonal 

matrix with the vector on its main diagonal and zeros elsewhere (see Miller and Blair, 2009, 

p. 697). The patterns (3) provide the combined price and quantity description of an economy 

response to exogenous changes in the input-output model’s variables, inter alia, in net final 

demand and in gross value added.  

The nonlinear multiplicative patterns (3) generate a nonlinear problem of input-output 

analysis as follows: 
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yqZpqXp  00 ˆˆ ,           vqpZqpX  ˆˆ 00 . 

Note that here the unknown vectors p and q cannot be estimated unambiguously because the 

patterns (3) are hyperbolically homogeneous, since 0XqpX  , 0ZqpZ  , and cc qpqp   

for any nonzero scalar c. 

Nevertheless, evaluating of input-output model (1), (2) in terms of the production quantity 

changing at constant prices on the products and/or in terms of price changing at constant level of 

production in the industries is of great theoretical and practical interest.  

3. The linear input-output models at constant prices and at constant production level  

In a case of constant prices on products we have NEp ˆ  where EN is identity matrix of order N, 

so the nonlinear multiplicative patterns (3) can be rewritten in linear form, namely 

qXX ˆ0 ,                 qZZ ˆ0 .                                                 (4) 

Substituting multiplicative patterns (4) in the equations of input-output model (1), (2), we 

obtain 

  yqZX  00 ,                                                           (5) 

  vqZXe  00N                                                          (6) 

respectively.  

Assessing the input-output model (1), (2) at constant level of production in the industries 

(at  where EMEq ˆ M is identity matrix of order M) leads to following linear patterns 

0ˆXpX  ,                 0ˆZpZ  .                                                  (7) 

Finally, substituting multiplicative patterns (7) in the equations of input-output model (1), 

(2), we have 

  ypeZX  M00 ,                                                     (8) 

  vpZX  00                                                            (9) 

respectively. 

4. Exploring an input-output model at constant prices 

According to the first equation (4), the row vector of industry outputs is equal to 

00 ˆ XeqqXeXe NNN   from which the quantity index q follows as XeXeq NN  1
0ˆ  

where the obvious commutativity property of diagonal matrices is used. Substituting the latter 

expression in multiplicative patterns (4) gives two linear matrix-valued functions 

XeGXeXeXqXX NNN  1
000 ˆ ,                                       (10) 
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XeAXeXeZqZZ NNN  1
000 ˆ                                         (11) 

with vector of industry outputs Xe N  as their common argument. Note that matrix 

1
00

 XeXG N  is known in special literature as product-mix matrix (see Eurostat, 2008) with 

shares of each product in output of an industry in a column. The matrix G in (10) provides a 

linkage between production matrix X and its column marginal totals. 

In turn, matrix-valued function (11) establishes a linear dependency of intermediate 

consumption matrix Z from the industry outputs Xe N , and so it can be classified as the linear 

matrix-valued cost function. Matrix 1

0


XN0  eZA  is widely known under the name of 

(Leontief) technical coefficients matrix (see, e.g.,  Miller and Blair, 2009). 

Substituting the matrix-valued cost function (11) in the equations of input-output model 

(1), (2), we have 

yeXAXe  NM ,            vXeAeXe  NNN . 

Proceeding by using formula (10) gives 

yeXAeXG  NN ,            veXAeeX  NNN , 

and finally we obtain system of equations 

  yeXXeZX  
NN

1

000 ,            veXXeZXe  
NNN

1

000  

that exactly corresponds to the system (5), (6) provided that XeXeq NN  1
0ˆ . 

From the other side, in accordance with the second equation (4) the row vector of industry 

expenditures for intermediate consumption is equal to 00 ˆ ZeqqZeZe NNN   from which 

index q follows as ZeZeq NN  1

0ˆ . Substituting the latter expression in multiplicative 

patterns (4) yields two linear matrix-valued functions 

ZeAZeZeXqXX NNN   ~ˆ 1

000 ,                                      (12) 

ZeGZeZeZqZZ NNN   ~ˆ 1

000                                        (13) 

with vector of industry intermediate inputs Ze N  as their common argument. Here matrix-valued 

function (12) provides a linear dependency of output matrix X from the industry intermediate 

inputs , and so it can be classified as the linear matrix-valued production function. Matrix Ze N

1

00

~  ZeXA N  is apparently not known in special literature in contrast to Leontief technical 

coefficients matrix 1

00

 XeZA N , but it is easy to see that matrices  and A are in certain 

“quasi-reciprocal” relation. 

A
~
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The equation (13) establishes a linkage between intermediate consumption matrix Z and its 

column marginal totals. Matrix 
1

00

~  ZeZG N  are apparently not mention in special literature 

in contrast to its well-known twin – the product-mix matrix 
1

00
 XeXG N . 

Substituting the matrix-valued production function (12) in the equations of input-output 

model (1), (2), we obtain 

yZeeZA  MN

~
,          vZeZeAe  NNN

~
. 

Proceeding by using formula (13) gives 

yeZGeZA  NN

~~
 ,         veZeZAe  NNN

~
 

and finally we get the system of equations 

  yeZZeZX  
NN

1

000 ,         veZZeZXe  
NNN

1

000  

that exactly corresponds to the system (5), (6) provided that ZeZeq NN  1

0ˆ . 

It is important to emphasize here that using matrix-valued production function (12) with 

quasi-reciprocal technical coefficients leads to the same result as introducing matrix-valued cost 

function (11) with conventional (Leontief) coefficients. This fact can be appreciated as explicit 

testimony of dual nature of input-output modeling at constant prices. 

5. Exploring an input-output model at constant production level 

According to the first equation (7), the column vector of product outputs is equal to 

peXeXpXe MMM 00ˆ   from which the price index p follows as 
1

0ˆ  MM eXXep  

where the commutativity property of diagonal matrices is used again. Substituting the latter 

expression in multiplicative patterns (7) gives two linear matrix-valued functions 

HXeXeXXeXpX MMM  
0

1
00ˆ ,                                       (14) 

BXeZeXXeZpZ MMM  
0

1
00ˆ                                         (15) 

with vector of product outputs  as their common argument. Note that matrix MXe

0

1

0 XeXH
 M  is known in special literature as market shares matrix (see Eurostat, 2008) with 

contributions of each industry to the output of a product in a row. The matrix H in (14) provides 

a linkage between production matrix X and its row marginal totals. 

In turn, matrix-valued function (15) establishes a linear dependency of intermediate 

consumption matrix Z from the product outputs , and so it can be classified as the linear 

matrix-valued cost function. Matrix 

MXe

0

1
Z0eX

 MB  is known under the name of (Ghosh) 
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allocation coefficients matrix (see, e.g.,  Miller and Blair, 2009). 

Substituting the matrix-valued cost function (15) in the equations of input-output model 

(1), (2), we have 

yBeXeXe  MMM ,        vBXeXe  MN . 

Proceeding by using formula (14) gives 

yXeBeXe  MMM ,           vXeBXeH  MM , 

and finally we obtain system of equations 

  yXeeXeZX  
MMM

1

000 ,         vXeeXZX  
MM

1

000  

that exactly corresponds to the system (8), (9) provided that 
1

0ˆ  MM eXXep . 

From the other side, in accordance with the second equation (7) the column vector of 

product intermediate consumption is equal to peZeZpZe MMM 00ˆ   from which index p 

follows as 
1

0ˆ  MM eZZep . Substituting the latter expression in multiplicative patterns (7) 

yields two linear matrix-valued functions 

BZeXeZZeXpX
~ˆ 0

1

00 MMM  
,                                       (16) 

HZeZeZZeZpZ
~ˆ 0

1

00 MMM  
                                        (17) 

with vector of product intermediate inputs  as their common argument. Here matrix-valued MZe

function (16) provides a linear dependency of output matrix X from the product intermediate 

inputs , and so it can be classified as the linear matrix-valued production function. Matrix MZe

~
0

1

0 XZB  e


M  is apparently not known in special literature in contrast to Ghosh allocation 

coefficients matrix 0

1

0 ZeXB
 M , but it is easy to see that matrices B

~
 and B are in certain 

“quasi-reciprocal” relation. 

The equation (17) establishes a linkage between intermediate consumption matrix Z and its 

row marginal totals. Matrix 0

1

0

~
ZeZH

 M  are apparently not mention in special literature in 

contrast to its well-known twin – the market shares matrix 0

1

0 XeXH
 M . 

Substituting the matrix-valued production function (16) in the equations of input-output 

model (1), (2), we obtain 

yZeeBZe  MMM

~
,       vZeBZe  NM

~
. 

Proceeding by using formula (17) gives 

yZeZeeB  MMM

~
,       vZeHZeB  MM

~~
 

and finally we get the system of equations 
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  yZeeZeZX  
MMM

1

000 ,         vZeeZZX  
MM

1

000  

that exactly corresponds to the system (5), (6) provided that 
1

0ˆ  MM eZZep . 

Here it is worth to mention that using matrix-valued production function (16) with quasi-

reciprocal allocation coefficients leads to the same result as introducing matrix-valued cost 

function (17) with conventional (Ghosh) coefficients. This fact can be appreciated as ostensive 

evidence of dual nature of input-output modeling at constant level of production. 

6. Regular and supplementary solutions for the model at constant prices 

Consider some operational opportunities in obtaining solutions for the input-output model (5), 

(6) in the cases of evaluating a response of the economy to exogenous changes in the net final 

demand vector  with dimensions N1 or in the value added vector 0yyy   0vvv    with 

dimensions M1 at constant prices. Here it is assumed that “disturbed” vectors  and  do not 

have any zero components. 

y v

The material balance model (5) contains N linear equations with M scalar variables q, 

whereas the financial balance model (6) includes M linear equations with the same M unknowns. 

Hence, in most general case N > = < M one can assess a response of the economy only to 

exogenous change in the value added vector 0vvv    by resolving the equation (6) written as 

   vqvqZXe 000 ˆN  with respect to the column vector of the relative quantity indices 

for industries, namely 


 vvq 1
0ˆ .                                                               (18) 

It should be noted that the solution (18) is valid at any numbers of products and industries 

in the economy. Nevertheless, this regular solution is trivial because a response of input-output 

model (5), (6) to the disturbance 0vvv    comes to the alternate multiplying the columns of 

production and intermediate consumption matrices X0 and Z0 on the growth indices of value 

added through all industries at constant prices on the products. 

However, at N = M = K a choice of alternative exogenous condition is also feasible in 

finding a supplementary solution for the model (5), (6). Under the exogenous final demand 

condition , the equation (5) written as 0yyy      yqZX 00  can be resolved with 

respect to the column vector of the relative quantity indices for industries, namely 

  
 yZXq 1

00 ,                                                      (19) 

of course, if an inverse of the square (at N = M = K) matrix 00 ZX   exists as it is expected to be. 

(Note that initial production matrix X0 usually has the dominant main diagonal.) The 
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supplementary solution (19) is valid only if the values of N and M coincide, but it is not trivial in 

contrast to regular solution (18). 

7. Regular and supplementary solutions for the model at constant production level 

In its turn, consider operational opportunities in getting solutions for the input-output model (8), 

(9) in the cases of evaluating a response of the economy to exogenous changes in the final 

demand vector 0yyy    or in the value added vector 0vvv    at constant level of 

production. 

The material balance model (8) contains N linear equations with N scalar variables p, 

whereas the financial balance model (9) includes M linear equations with the same N unknowns. 

Hence, in a general case N > = < M one can evaluate a response of the economy only to 

exogenous change in the final demand vector 0yyy    by resolving the equation (8) written 

as    ypypeZX 000 ˆM  with respect to the column vector of the relative price indices 

on products, namely 


 yyp 1
0ˆ .                                                            (20) 

The regular solution (20) is valid at any numbers of products and industries in the 

economy. Nevertheless, this solution is trivial because a response of input-output model (8), (9) 

to the disturbance  comes to the alternate multiplying the rows of production and 

intermediate consumption matrices X

0yyy  

0 and Z0 on the value indices of final demand through all 

products at constant level of production in the industries. 

However, at N = M = K a choice of alternative exogenous condition is also feasible in 

finding a supplementary solution for the model (8), (9). Under the exogenous value added 

condition , the equation (9) written as 0vvv      vpZX 00  can be resolved with 

respect to the column vector of the relative price indices on products, namely 

  
 vZXp 1

00 ,                                                  (21) 

of course, if an inverse of the square (at N = M = K) matrix 00 ZX   exists. (Recall that initial 

production matrix X0 usually has the dominant main diagonal.) The supplementary solution (21) 

is valid only if the values of N and M coincide, but in contrast to the regular solution (20), it is 

not trivial. 

It is interesting here to pay attention to the fact that models (5), (6) and (8), (9) do 

demonstrate  remarkable duality properties in pairwise comparison of the regular solutions (18) 

and (20) at any values N and M as well as the supplementary solutions (19) and (21) at 

N = M = K respectively. 
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8. Generalized versions of Leontief demand-driven model and Ghosh supply-driven model 

The model (5), (6) and its supplementary solution (19) together with the resulting disturbances in 

production and intermediate consumption matrices (4) describe an impact of exogenous changes 

in final demand in terms of the production quantity changing at constant prices on the products. 

The model (8), (9) and its supplementary solution (21) together with the resulting disturbances in 

production and intermediate consumption matrices (7) characterize an impact of exogenous 

changes in value added in terms of price changing at constant level of production in the 

industries. 

Model (5), (6) at N = M = K can be considered as a generalized version of well-known 

Leontief demand-driven model (see Miller and Blair, 2009, Section 2.2.2). It serves to assess an 

impact of exogenous (absolute or relative) changes in final demand on the economy at constant 

prices. Indeed, as it follows from (4), the main fundamentals of model (5), (6)  are X qX ˆ0  and 

 where  qZZ ˆ0

       






  yeXBHyBHeXyZXq

1
0

11
0

1
00 KK                 (22) 

according to (19). Total requirements matrix, which links the vector of product outputs with the 

final demand vector, can be derived as follows: 

       






  yXZEyXZXyZXXqXXe

11
00

11
000

1
0000 KK .       (23) 

Note that generalized technical coefficients  have been explored by Jansen and ten 

Raa (1990) and other authors in the context of constructing symmetric input-output tables; this 

form of technical coefficients is known as commodity technology model. 

1
00
XZ

Model (8), (9) at N = M = K can be classified as a generalized version of Ghosh supply-

driven model (see Miller and Blair, 2009, Section 12.1). It helps to evaluate an impact of 

exogenous (absolute or relative) changes in value added on the economy at fixed production 

scales (at constant level of production). As it follows from (7), the main fundamentals of model 

(8), (9) are  and  where 0ˆ XpX  0ˆZpZ 

       






  vXeAGvAGXevZXp

1
0

11
0

1
00 KK                 (24) 

in accordance with (21). A Ghosh analogue of total requirements matrix, which links the vector 

of industry outputs with the value added vector, can be derived as follows: 

         






  vXZEvXZXvZXXpXeX

11
00

11
000

1
0000 KK .    (25) 

Here it is worth to mention the duality properties of models (5), (6)  and (8), (9) again, 

because a response of model (5), (6) to the disturbance of the final demand coefficients 
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


yeX
1

0 M  is described in the equation (22) in terms of matrices H and B, whereas a response 

of model (8), (9) to the disturbance of the value added coefficients 
 vXe

1
0N  is represented in 

the equation (24) in terms of matrices G and A. 

9. The Leontief and Ghosh models for symmetric input-output table 

Vectors q and p are defined in previous Section under an assumption that all the matrices in (22) 

– (25) are square (at N = M = K). In addition, let the initial production matrix X0 be a diagonal 

one as in a symmetric input-output table. Then the generalized versions of Leontief and Ghosh 

models considered above can be easily led to a “classical” view.  

Diagonal matrix X0 of order K has a following row of properties: 

KK eXXeXX 0000  .                                               (26) 

The most famous Leontief formula for demand-driven model can be obtained using (22), 

(26) and some algebraic properties of diagonal matrices along the sequential transformations of 

the product outputs vector  as follows:  KXe

       







  yAEyXeZXyZXXqXXe 111
000

1
0000 KKK          (27) 

where A is the (Leontief) technical coefficients matrix, as earlier. 

Its analogue for Ghosh supply-driven model can be easily derived in the similar manner, 

using (24) and then (26) along the sequential transformations of the industry outputs vector KeX  

as follows: 

       







  vBEveXZXvZXXpXeX 111
000

1
0000 KKK        (28) 

where B is the (Ghosh) allocation coefficients matrix, as earlier. 

It is to be emphasized that direct putting (26) into the main statement for generalized 

version of Ghosh supply-driven model (24) gives well-known formula 

      






  vXeAEvZXevZXp

1

0
11

00
1

00 KKK                   (29) 

for so-called Leontief price model (see Miller and Blair, 2009, p. 44). Thus, in the case of a 

symmetric input-output table (when X0 is diagonal matrix) the Ghosh supply-driven model is 

equivalent to the Leontief price model (see also Dietzenbacher, 1997, for more details about 

interrelation of these models). 

It can be shown in similar manner that the Leontief demand-driven model serves as the 

Ghosh quantity model. Indeed, direct substituting (26) into the main statement for generalized 

version of Leontief demand-driven model (22) gives a brief proof of this fact, namely 

      






  yeXBEyZeXyZXq

1

0
11

00
1

00 KKK .                 (30) 
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It is appropriate to mention that all formulas obtained above in this and previous Section 

demonstrate a remarkable set of duality properties, especially in pairwise comparisons. For 

instance, generalized version of the technical coefficients matrix 1
00

 XeZA N  in (27) is 

matrix  in (23), whereas generalized version of the allocation coefficients matrix 1
00
XZ

0
1
Ze


M0XB   in (28) is matrix  in (25). 0

1
0 ZX 

10. Concluding remarks 

A general formulation of linear input-output model is considered in the paper as a system of 

equations written in terms of free variables for any rectangular input-output (or supply and use) 

table given. This system spans the regular linear equations for material and financial balances 

with a batch of predetermined values for exogenous variables (final demand and value added 

vectors). 

Any variations in exogenous elements of input–output model lead to the changes of price 

and quantity proportions in the resulting supply and use table that are formally described by the 

nonlinear multiplicative patterns (3). These patterns can be adjusted for evaluating the input–

output model at constant prices in linear form (4) and at constant level of production in linear 

form (7). 

The proposed approach for assessing the model at constant prices provides an exact 

identifiability of the model within rectangular and square formats by introducing to the system of 

its equations either the linear matrix-valued cost function with industry outputs as its arguments 

based on (Leontief) technical coefficients (11) or the linear matrix-valued production function 

with industry inputs as its arguments based on industry productive (quasi-reciprocal technical) 

coefficients (12). In contrast, the model at constant level of production is exactly identifiable 

provided that one involves in it either the linear matrix-valued cost function with product outputs 

as its arguments based on (Ghosh) allocation coefficients (15) or the linear matrix-valued 

production function with product inputs as its arguments based on product multiplication (quasi-

reciprocal allocation) coefficients (16). 

It is important to emphasize that in a case of constant prices using matrix-valued 

production function (12) with quasi-reciprocal technical coefficients leads to the same result as 

introducing matrix-valued cost function (11) with conventional Leontief coefficients.  

Analogously, in a case of constant production level results of using cost function with 

Ghosh coefficients (15) and production function with quasi-reciprocal allocation coefficients 

(16) also coincide between each other. Thus, technical and allocation coefficients should be 

regarded as helpful ways of economic interpretation rather than as basic framework or 

https://www.lingvolive.com/en-us/translate/ru-en/especially
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operational tools for modeling, contrary to a widely accepted point of view that “the center-piece 

of input–output analysis is a matrix... of technical coefficients” (ten Raa, 1994, p.4). Moreover, 

equivalence of the models with the matrix-valued production functions and the models with the 

matrix-valued cost functions can be appreciated as a clear demonstration of general equilibrium 

in the theory of input-output analysis and an ostensive evidence of dual nature of input-output 

modeling. 

The regular (at any values N and M) and supplementary (at N = M) solutions for model (5), 

(6) at constant prices are derived in (18), (19) and for model (8), (9) at constant production level 

are obtained in (20), (21). Square models (5), (6) and (8), (9) with the supplementary solutions 

(19) and (21) can be classified as generalized versions of Leontief demand-driven model and 

Ghosh supply-driven model respectively. 

In a case of symmetric input-output table, the properties of diagonal production matrix 

allow transforming the generalized versions of Leontief and Ghosh models into the “classical” 

input–output models. In this context, the equivalence of Leontief price model and Ghosh supply-

driven model as well as the equivalence of Leontief demand-driven model and Ghosh quantity 

model is proven. It is interesting to note that relevant formulas do demonstrate a remarkable set 

of duality properties. 
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	where  and  are N(M-dimensional matrices of the relative price indices for products,  and  are N(M matrices of the relative quantity (physical volume) indices for industries of the economy, and the character “ ( ” denotes the Hadamard’s (element-wise) product of two matrices with the same dimensions. 

